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Introduction
The Great Basin (Figure 1) is a tectonically-active area of 
widespread crustal extension in the western United States.  
The region is characterized by numerous north-south 
oriented mountain ranges formed as normal faults during 
extension, which are separated by sediment-filled valleys.  
Crustal extension in the Great Basin can be as much as 200%, 
is oriented predominantly east-west, and is generally thought 
to have occurred over the past 20 My (Figure 2).

Our goal is to understand the causes of extension in the 
Great Basin and the extent to which mantle dynamics has 
contributed to this extention. Seismic 
anisotropy is widely used to infer strain 
conditions and recent history in the upper 
mantle. In this study we therefore 
examine seismic anisotropy via 
shear-wave splitting analysis to evaluate 
mantle flow and other forces acting on 
this region. 
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Data
The Great Basin is home to eight long-term broadband 
seismic stations (BMN, ELK, MNV, NV31, NV32, NV33, TPH, 
and TPNV), and is also temporarily occupied by 74 stations 
of the EarthScope/USArray Transportable Array (TA) 
(Figure 3).  We analyzed two data sets, one with 
approximately 14 years of data for the eight long-term 
stations, and the other with approximately 2 years of 
data for the TA.  Because of the roll-out schedule for 
the TA, some of the stations in this region have been in 
operation for less than a year.  

For our shear-wave splitting 
analysis, we selected events 

with mb > 5.8 and epicentral distances between 85 and 130 
degrees.  We began the analysis effort with 14,476 total 
event/station pairs.  Following elimination of unsuitable 
samples we present results for 1326 well-constrained 
measurements, of which 633 are nulls and 693 are splits.

Figure 4 shows the locations of seismic events used in this 
study.  As expected given the study location and global 

seismicity distribution, the majority of the events included in this 
dataset originated from the westward margins of the Pacific plate.
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Methods
When a seismic shear wave passes through an anisotropic 
material, its energy is split into two orthogonal 
components which travel at differing velocities.  Using 
the method of Silver and Chan (1991) and the SplitLab 
analysis tool set (Wüstefeld, et. al 2007), we determined 
the splitting delay time (dt) and the direction of the fast 
axis of transmission (phi) for each event/station pair. 

We show a 
splitting 
example 
(Figure 5) 
and a record 
section of the 
same event 
recorded at 
multiple 
stations 
(Figure 6).

  Event: 04-Apr-2007 (094) 11:00  -20.73N 168.87E  10km  Mw=6.2
       Station: M10A   Backazimuth: 244.5    Distance: 92.78
init.Pol.:   63.4   Filter: 0.020Hz - 0.20Hz    SNR SC:11.0

Rotation Correlation:  -84<  -74 < -65     1.2< 1.3s <1.5
      Minimum Energy:  -88<  -79 < -76     1.2< 1.4s <1.6
          Eigenvalue:   88<  -81 < -72     1.2< 1.4s <1.7
             Quality: good     IsNull: No     Phase: SKS
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Results
Our splitting measurements show several notable 
features (Figure 7):

• In the northern portion of the Great Basin, splitting 
times are generally large (near 2 seconds) and 
oriented in a nearly east-west direction. These results 
are consistent with findings by Fouch (2007) and Klaus 
et. al. (2007) for separate studies in the Pacific 
Northwest, north of our study region.

• Southward toward the central Great Basin, splitting 
times generally become shorter, and fast directions 
exhibit a noticeable “swirl” pattern.  This pattern was 
originally shown by Savage and Sheehan (2000) for a 
relatively limited dataset.

• In the central Great Basin, the “swirl” pattern 
becomes more apparent and splitting times become 
quite small, except along the western edge of the 
Great Basin.

• In the southern and eastern Great Basin the “swirl” 
pattern is less evident, likely due to the limited data 
availability for this region.
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Discussion
Station-averaged splitting 
results plotted with P-wave 
delay-time tomography at 
200 km depth (Roth and 
Fouch, 2007)(Figure 8), and 
Two Plane-Wave 
Tomography (TPWT) results 
of Yang and Ritzwoller 
(2007)(Figure 9) both clearly 
show a high-velocity mantle 
anomaly near the center of 
the “swirl”.  To develop 
further constraints on the 
cause of the “swirl”, we 
compare the splitting 
variations to Complete 
Bouguer Gravity Anomaly 
(Figure 10), and heat flow 
(Figure 11) datasets. 
(http://paces.geo.utep.edu/
research/gravmag/gravmag.shtml and 
http://www.smu.edu/geothermal/heatflow
/heatflow.htm.)

The presence of the “swirl” pattern of 
anisotropy implies that the anomaly is 
somehow anchored in such a way that there 
is (or was) asthenospheric flow around the 
anomaly.  The weak splitting in the anomaly 
could be due to:
• Vertical flow (implies vertical fast axis)
• Recent reorganization of the local mantle 

flow field
• High level of complexity, or little/no 

anisotropy
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Conclusions
• The northern Great Basin comprises a transition zone between the 

northern Basin and Range near the Pacific Northwest, which is 
characterized by large (~2 sec) splitting times and sub-east/west 
fast axis directions, and the central Great Basin, which is 
characterized by small splitting times (<1 sec) and a circular 
“swirl” pattern centered in central Nevada.

• The “swirl” pattern is not easily explainable by traditional tectonic 
or mantle flow processes, or driven by lithospheric extension.

• The center of the “swirl” pattern coincides with an area of 
relatively low heat flow, low Complete Bouguer Gravity anomaly, 
and high P-wave velocity.  In tomographic images, the P-wave 
velocity anomaly is most pronounced around 200 km depth.

• The western edge of the Great Basin (Mina, NV and points 
southwest) exhibits large splitting times and clear evidence for 
back-azimuthal variations.  This appears to be the transition to a 
different structural regime likely related to Sierra Nevada 
dynamics.

Plans for Future Study
• Receiver function study to add depth constraints to extent of 

anisotropy

• Addition of Utah Great Basin TA station results as TA rollout 
continues

• Rayleigh/Love wave analysis to look for vertically-oriented fast 
direction of anisotropy (currently in-process by C. Beghein)

• Modeling to look for multiple layers and/or dipping layers of 
anisotropy
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Possible Causes of the “Swirl” in SWS Beneath 
the Great Basin

Various researchers have proposed models to account for extension in the region 
and/or the “swirl” pattern observed in central Great Basin shear-wave splitting.  
Here we briefly describe each primary model and its fit to the regional geophysical 
data.

1. Extension caused by tectonic processes due to Gravitational Potential Energy 
(GPE) collapse, (Sonder and Jones 1999, Flesch 2007) or far-field effects 
(Humphreys and Coblentz 2007).  These studies examine Great Basin extension, 
but do not address the “swirl” pattern, gravity low, low heat flow, or the localized 
tomographic high velocity anomaly.

2. Plume flow + asthenospheric flow  (Savage and Sheehan 2000)
• Can explain “swirl” pattern in fast directions.
• Plume warming could explain small splitting times.
• Missing signatures of a plume – center is a cold spot, not a hot spot.
• Should be imaged by P-wave tomographic as a lower velocity region (higher 

velocity anomaly)

3. Toroidal flow at edge of subducting plate (Zandt and Humphreys 2007)
• Can explain “swirl” pattern in fast directions.
• Recent reorganization of LPO could account for small splitting times.
• Not consistent with simple splitting patterns in High Lava Plains and surrounding 

regions.
• Does not explain low gravity or low heat flow.
• Does not explain local P-wave tomographic high-velocity anomaly. 

4. Asthenospheric flow around slab remnant Upward-protruding feature of 
subducting Juan de Fuca slab beneath central Nevada (Roth and Fouch, 
2007)(Figure 12)
• Can explain “swirl” pattern in fast directions.
• Recent reorganization of LPO from east-west to “swirl” pattern might cause 

small splitting times.
• Can explain low heat flow.
• Incorporates tomographic localized high-velocity anomaly (Roth and Fouch, 

2007).
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Figure 12:  3-dimensional model of the subducting Juan de Fuca slab 
(Roth 2007) from P-wave delay-time tomography shows the upwardly 
protruding feature labeled as the “Nevada Anomaly”.  This feature is 
located at approximately 117ºW 39ºN, near the center of the “swirl” 
pattern in shear-wave splitting anisotropy, the area of low heat 
flow, and the complete Bouguer Gravity low.  View is from above 
and northeast; the “Nevada Anomaly” is on the southern edge of the 
slab and the slab is subducting eastward toward the bottom left 
corner of the figure.


